Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Antioxidants (Basel) ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38671948

RESUMO

Endothelin-1 is a key regulator of vascular tone and blood pressure in health and disease. We have recently found that ET-1 production in human microvascular endothelial cells (HMECs) can be promoted by angiotensin II (Ang II) through a novel mechanism involving octamer-binding transcription factor-1 (Oct-1), NADPH oxidase-2 (NOX2), and superoxide anions. As the formation of bioactive ET-1 also depends on endothelin-converting enzyme-1 (ECE-1), we investigated the transcriptional regulation of the ECE1 gene. We found that exposure of HMECs to Ang II resulted in a concentration- and time-dependent increase in ECE1 mRNA expression. Pharmacological inhibition of ECE-1 reduced Ang II-stimulated ET-1 release to baseline values. The effect of Ang II on ECE1 mRNA expression was associated with Oct-1 binding to the ECE1 promoter, resulting in its increased activity. Consequently, the Ang II-stimulated increase in ECE1 mRNA expression could be prevented by siRNA-mediated Oct-1 inhibition. It could also be abolished by silencing the NOX2 gene and neutralizing superoxide anions with superoxide dismutase. In mice fed a high-fat diet, cardiac expression of Ece1 mRNA increased in wild-type mice but not in Nox2-deficient animals. It can be concluded that Ang II engages Oct-1, NOX2, and superoxide anions to stimulate ECE1 expression in the endothelium.

2.
Front Immunol ; 15: 1282754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444851

RESUMO

Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.


Assuntos
Dengue , Vacinas , Viroses , Humanos , Vacinologia , Vacinação , Dengue/prevenção & controle
3.
J Scleroderma Relat Disord ; 9(1): NP1-NP6, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333524

RESUMO

Scleroderma renal crisis is a rare complication of systemic sclerosis characterized by a rapid decline in kidney function due to acute renal vascular injury. Recently, activating autoantibodies targeting the angiotensin II type 1 receptor and the endothelin-1 type A receptor have been implicated in the pathophysiology of scleroderma renal crisis by sensitizing the angiotensin II type 1 receptor and endothelin-1 type A receptor in renal resistance arteries to their natural ligands. Here, we describe a cohort of 10 patients with scleroderma renal crisis refractory to standard treatment, including blockade of the renin-angiotensin system. Multimodal therapy was initiated, targeting at the removal of anti-angiotensin II type 1 receptor and anti-endothelin-1 type A receptor autoantibodies by plasma exchange and the reduction of vasoconstrictive activity. Further treatment options included angiotensin II type 1 receptor and endothelin-1 type A receptor blockade, iloprost, intravenous immunoglobulins, and immunosuppression. Six patients were hypertensive. On kidney biopsy, concentric intimal sclerosis was present in all patients, whereas acute vascular injury was evident in eight. Levels of anti-angiotensin II type 1 receptor and anti-endothelin-1 type A receptor autoantibodies were significantly reduced by multimodal treatment. Kidney function improved in three patients with histological signs of severe acute renal vascular damage. This report demonstrates that intensive multimodal therapy taking account of potentially pathogenic anti-angiotensin II type 1 receptor and anti-endothelin-1 type A receptor autoantibodies in concert with other vasodilatory interventions provides a salvage option for patients with refractory scleroderma renal crisis.

4.
J Am Heart Assoc ; 12(23): e032441, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38014691

RESUMO

BACKGROUND: Vasoregulatory autoantibodies including autoantibodies targeting G-protein-coupled receptors might play a functional role in vascular diseases. We investigated the impact of vasoregulatory autoantibodies on clinical outcome after ischemic stroke. METHODS AND RESULTS: Data were used from the PROSCIS-B (Prospective Cohort With Incident Stroke-Berlin). Autoantibody-targeting receptors such as angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor, complement factor-3 and -5 receptors, vascular endothelial growth factor receptor-1 and -2, vascular endothelial growth factor A and factor B were measured. We explored associations of high antibody levels with (1) poor functional outcome defined as modified Rankin Scale >2 or Barthel Index <60 at 1 year after stroke, (2) Barthel Index scores over time using general estimating equations, and (3) secondary vascular events (recurrent stroke, myocardial infarction) or death up to 3 years using Cox proportional hazard models. We included 491 patients with ischemic stroke with data on autoantibody levels and outcome. In models adjusted for demographics and vascular risk factors, high autoantibody concentrations (quartile 4) targeting complement factor C3a receptor, vascular endothelial growth factor receptor-2, and vascular endothelial growth factor B were associated with poor functional outcome at 1 year: (odds ratio, 2.0 [95% CI, 1.1-3.6]; odds ratio, 1.8 [95% CI, 1.1-3.2]; and odds ratio, 2.1 [95% CI, 1.2-3.6], respectively) and with lower Barthel Index scores over 3 years (complement factor C3a receptor: adjusted ß=-3.3 [95% CI, -5.7 to -0.5]; VEGF-B: adjusted ß=-2.4 [95% CI, -4.8 to -0.06]). Patients with high autoantibody levels were not at higher risk for secondary vascular events or death. CONCLUSIONS: High levels of autoantibodies against vascular endothelial growth factor receptor-2, vascular endothelial growth factor B, and complement factor C3a receptor measured are associated with poor functional outcome after stroke but not with recurrent vascular events or death. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01363856.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fator A de Crescimento do Endotélio Vascular , Fator B de Crescimento do Endotélio Vascular , AVC Isquêmico/complicações , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Estudos Prospectivos , Autoanticorpos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/complicações
5.
Front Immunol ; 14: 1289744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965310

RESUMO

Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-α) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-α secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-α synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-α gene transcription and TNF-α-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses.


Assuntos
Nefropatias , Trombina , Humanos , Aloenxertos , Autoanticorpos , Células Endoteliais/fisiologia , Imunoglobulina G , Rim , Monócitos , Receptor PAR-1 , Fator de Transcrição AP-1 , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Immunol ; 14: 1209464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795100

RESUMO

Aims: Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation. Methods and results: First, we found that human microvascular endothelial cells (HMECs) and other typical endothelial and kidney model cell lines (e.g. HUVECs, HREC, and HEK) exposed to uremic serum from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation II (PERCI-II) crossover clinical trial - comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes - exhibited strongly reduced expression of vasculoprotective KLF2 with HF dialyzers, while dialysis with MCO dialyzers led to the maintenance and restoration of physiological KLF2 levels in HMECs. Mechanistic follow-up revealed that the strong downmodulation of KLF2 in HMECs exposed to uremic serum was mediated by a dominant engagement of detrimental ERK instead of beneficial AKT signalling, with subsequent AP1-/c-FOS binding in the KLF2 promoter region, followed by the detrimental triggering of pleiotropic inflammatory mediators, while the introduction of a KLF2 overexpression plasmid could restore physiological KLF2 levels and downmodulate the detrimental vascular inflammation in a mechanistic rescue approach. Conclusion: Uremia downmodulates vasculoprotective KLF2 in endothelium, leading to detrimental vascular inflammation, while MCO dialysis with the novel improved HDx therapy approach can maintain physiological levels of vasculoprotective KLF2.


Assuntos
Falência Renal Crônica , Uremia , Humanos , Células Endoteliais , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Uremia/terapia , Uremia/complicações , Falência Renal Crônica/terapia , Fatores de Transcrição , Inflamação/complicações , Fatores de Transcrição Kruppel-Like/genética
7.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627585

RESUMO

Obesity is a major risk factor for cardiovascular and metabolic diseases. Multiple experimental and clinical studies have shown increased oxidative stress and inflammation linked to obesity. NADPH oxidases are major sources of reactive oxygen species in the cardiovascular system and in metabolically active cells and organs. An impaired balance due to the increased formation of reactive oxygen species and a reduced antioxidative capacity contributes to the pathophysiology of cardiovascular and metabolic diseases and is linked to inflammation as a major pathomechanism in cardiometabolic diseases. Non-alcoholic fatty liver disease is particularly characterized by increased oxidative stress and inflammation. In recent years, COVID-19 infections have also increased oxidative stress and inflammation in infected cells and tissues. Increasing evidence supports the idea of an increased risk for severe clinical complications of cardiometabolic diseases after COVID-19. In this review, we discuss the role of oxidative stress and inflammation in experimental models and clinical studies of obesity, cardiovascular diseases, COVID-19 infections and potential therapeutic strategies.

8.
NPJ Aging ; 9(1): 21, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620330

RESUMO

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ß peptide, ß catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.

9.
Front Immunol ; 14: 1243516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638052

RESUMO

Dengue virus (DENV) infection manifests as a febrile illness with three distinct phases: early acute, late acute, and convalescent. Dengue can result in clinical manifestations with different degrees of severity, dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Interferons (IFNs) are antiviral cytokines central to the anti-DENV immune response. Notably, the distinct global signature of type I, II, and III interferon-regulated genes (the interferome) remains uncharacterized in dengue patients to date. Therefore, we performed an in-depth cross-study for the integrative analysis of transcriptome data related to DENV infection. Our systems biology analysis shows that the anti-dengue immune response is characterized by the modulation of numerous interferon-regulated genes (IRGs) enriching, for instance, cytokine-mediated signaling (e.g., type I and II IFNs) and chemotaxis, which is then followed by a transcriptional wave of genes associated with cell cycle, also regulated by the IFN cascade. The adjunct analysis of disease stratification potential, followed by a transcriptional meta-analysis of the interferome, indicated genes such as IFI27, ISG15, and CYBRD1 as potential suitable biomarkers of disease severity. Thus, this study characterizes the landscape of the interferome signature in DENV infection, indicating that interferome dynamics are a crucial and central part of the anti-dengue immune response.


Assuntos
Interferons , Biologia de Sistemas , Humanos , Interferons/genética , Citocinas/genética , Antivirais , Ciclo Celular
10.
Front Immunol ; 14: 1200180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415976

RESUMO

During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Humanos , COVID-19/terapia , COVID-19/etiologia , SARS-CoV-2 , RNA Viral , Transplante de Células-Tronco Mesenquimais/métodos , Espanha
11.
Arterioscler Thromb Vasc Biol ; 43(8): 1429-1440, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381986

RESUMO

BACKGROUND: Increasing evidence suggests that superoxide ions produced by NOX (nicotinamide adenine dinucleotide phosphate oxidases) mediate vascular effects of Ang II (angiotensin II) evoked by atherogenic diets. Here, we analyzed the mechanism by which NOX2 contributes to Ang II-induced ET-1 (endothelin 1) production in human microvascular endothelial cells. METHODS: The effects of high-fat diet were compared between WT (wild type) and Nox2 (mouse NOX2 gene)-deficient mice. ET-1 production and NOX2 expression by human microvascular endothelial cells in vitro were analyzed by ELISA, reverse transcription quantitative polymerase chain reaction, electrophoretic mobility shift assay, promoter deletions, RNA interference, and pharmacological inhibition. Production of superoxide anions was visualized by fluorescent cell labeling. RESULTS: Feeding mice high-fat diet for 10 weeks increased cardiac expression and plasma levels of Ang II and ET-1 in WT but not in Nox2-deficient animals. Exposure of human microvascular endothelial cells to Ang II resulted in increased ET-1 production, which could be blocked by silencing NOX2 (human NOX2 gene). Ang II promoted NOX2 expression through induction of the Oct-1 (human/mouse octamer binding transcription factor 1 protein) and activation of the NOX2 promoter region containing Oct-1-binding sites. Stimulation of NOX2 expression by Ang II was associated with increased production of superoxide anions. Inhibition of Oct-1 by small interfering RNA reduced Ang II-induced NOX2 expression and superoxide anion production, and neutralization of superoxide by SOD (superoxide dismutase) abolished Ang II-stimulated ET1 (human ET-1 gene) promoter activity, ET1 mRNA expression, and ET-1 release. CONCLUSIONS: Ang II may promote ET-1 production in the endothelium in response to atherogenic diets through a mechanism that involves the transcription factor Oct-1 and the increased formation of superoxide anions by NOX2.


Assuntos
Células Endoteliais , Superóxidos , Camundongos , Animais , Humanos , Superóxidos/metabolismo , Células Endoteliais/metabolismo , Fator 1 de Transcrição de Octâmero , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
J Clin Med ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36983302

RESUMO

Early identification of allograft vasculopathy and the concomitant elimination of adverse risk factors is essential for improving the long-term prognosis of heart transplant (HTx) recipients with underlying cardiovascular disease (CVD). The major aim of this pilot study was to conduct a non-invasive imaging evaluation of the HTx patient microcirculation by employing nailfold video-capillaroscopy (NVC) in a well-characterized patient and control cohort, and to correlate these data with endothelial cell function, accompanied by studies of traditional cardiovascular risk factors and non-HLA antibodies in HTx recipients. Ten patients undergoing HTx (mean age of 38 ± 14 years) were recruited for the study and compared to a control group of 12 well-matched healthy volunteers (mean age 35 ± 5 years) with normal body mass index (BMI). Detailed medical records were collected from all individuals. NVC was performed using CapillaryScope 200 MEDL4N microscope. For functional readout and correlation analysis, endothelial cell network formation in conjunction with measurements of patient serum levels of vascular endothelial growth factor (VEGF) and non-HLA autoantibodies directed against the angiotensin II type-1-receptor (anti-AT1R-Ab), endothelin-1 type-A-receptor (anti-ETAR-Ab), protease-activated receptor-1 (anti-PAR-1-Ab), and VEGF-A (anti-VEGF-A-Ab) were studied. Our NVC analysis found that the average apical loop diameter of nailfold capillaries was significantly increased in HTx recipients (p = 0.001). In addition, HTx patients with more prominent changes in capillaroscopic patterns were characterized by the presence of traditional cardiovascular risk factors, and HTx patients had increased levels of anti-AT1R-ab, anti-ETAR-ab, and anti-VEGF-A-Ab (p = 0.017, p = 0.025, and p = 0.003, respectively). Capillary diameters most strongly correlated with elevated serum levels of troponin T and triglycerides (R = 0.69, p = 0.028 and R = 0.81, p = 0.004, respectively). In conclusion, we found that an abnormal NVC pattern in HTx patients is associated with traditional CVD risk factors and that NVC is a useful non-invasive tool to conveniently monitor changes in the microvasculature of HTx patients.

13.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906052

RESUMO

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Autoanticorpos , Autoimunidade , Receptores Acoplados a Proteínas G/metabolismo
14.
J Med Virol ; 95(2): e28450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597912

RESUMO

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Matadoras Naturais , Ciclo Celular
15.
Rheumatology (Oxford) ; 62(6): 2284-2293, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227102

RESUMO

OBJECTIVES: Scleroderma renal crisis (SRC) is a rare vascular complication of systemic sclerosis with substantial risks for end-stage renal disease and premature death. Activating autoantibodies (Abs) targeting the angiotensin II type 1 (AT1R) and the endothelin-1 type A receptor (ETAR) have been identified as predictors for SRC. Here, we sought to determine their pathogenic significance for acute renal vascular injury potentially triggering kidney failure and malignant hypertension. METHODS: IgG from patients with SRC was studied for AT1R and ETAR dependent biologic effects on isolated rat renal interlobar arteries and vascular cells including contraction, signalling and mechanisms of receptor activation. RESULTS: In myography experiments, patient IgG exerted vasoconstriction sensitive to inhibition of AT1R and ETAR. This relied on MEK-ERK signalling indicating functional relevance of anti-AT1R and anti-ETAR Abs. The contractile response to angiotensin II and endothelin-1 was amplified by patient IgG containing anti-AT1R and anti-ETAR Abs with substantial crosstalk between both receptors implicating autoimmune receptor hypersensitization. Co-immunoprecipitation experiments indicated heterodimerization between both receptor types which may enable the observed functional interrelation by direct structural interactions. CONCLUSION: We provide experimental evidence that agonistic Abs may contribute to SRC. This effect is presumably related to direct receptor stimulation and additional allosteric effects, at least in heterodimeric receptor constellations. Novel therapies targeted at autoimmune hyperactivation of AT1R and ETAR might improve outcomes in severe cases of SRC.


Assuntos
Injúria Renal Aguda , Esclerodermia Localizada , Lesões do Sistema Vascular , Ratos , Animais , Angiotensina II , Endotelina-1 , Autoanticorpos , Receptor de Endotelina A , Imunoglobulina G
16.
Life Sci ; 310: 121114, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273629

RESUMO

AIMS: Prostaglandins are important signaling lipids with prostaglandin E2 (PGE2) known to be the most abundant prostaglandin across tissues. In kidney, PGE2 plays an important role in the regulation of kidney homeostasis through its EP receptor signaling. Catabolism of PGE2 yields the metabolic products that are widely considered biologically inactive. Although recent in vitro evidence suggested the ability of 15-keto-PGE2 (a downstream metabolite of PGE2) to activate EP receptors, the question whether 15-keto-PGE2 exhibits physiological roles remains unresolved. MATERIALS AND METHODS: Pharmacological treatment was performed in transgenic zebrafish embryos using 500 µM 15-keto-PGE2 and 20 µM EP receptors antagonists' solutions during zebrafish embryonic development. After the exposure period, the embryos were fixed for confocal microscopy imaging and glomerular morphology analysis. KEY FINDINGS: Here, we show that 15-keto-PGE2 can bind and stabilize EP2 and EP4 receptors on the plasma membrane in the yeast model. Using lipidomic analysis, we demonstrate both PGE2 and 15-keto-PGE2 are present at considerable levels in zebrafish embryos. Our high-resolution image analysis reveals the exogenous treatment with 15-keto-PGE2 perturbs glomerular vascularization during zebrafish development. Specifically, we show that the increased levels of 15-keto-PGE2 cause intercalation defects between podocytes and endothelial cells of glomerular capillaries effectively reducing the surface area of glomerular filtration barrier. Importantly, 15-keto-PGE2-dependent defects can be fully reversed by combined blockade of the EP2 and EP4 receptors. SIGNIFICANCE: Altogether, our results reveal 15-keto-PGE2 to be a biologically active metabolite that modulates the EP receptor signaling in vivo, thus playing a potential role in kidney biology.


Assuntos
Receptores de Prostaglandina E Subtipo EP2 , Peixe-Zebra , Animais , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Células Endoteliais/metabolismo , Receptores de Prostaglandina E Subtipo EP4 , Prostaglandinas
17.
Front Endocrinol (Lausanne) ; 13: 880002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518926

RESUMO

In conjunction with the endothelin (ET) type A (ETAR) and type B (ETBR) receptors, angiotensin (AT) type 1 (AT1R) and type 2 (AT2R) receptors, are peptide-binding class A G-protein-coupled receptors (GPCRs) acting in a physiologically overlapping context. Angiotensin receptors (ATRs) are involved in regulating cell proliferation, as well as cardiovascular, renal, neurological, and endothelial functions. They are important therapeutic targets for several diseases or pathological conditions, such as hypertrophy, vascular inflammation, atherosclerosis, angiogenesis, and cancer. Endothelin receptors (ETRs) are expressed primarily in blood vessels, but also in the central nervous system or epithelial cells. They regulate blood pressure and cardiovascular homeostasis. Pathogenic conditions associated with ETR dysfunctions include cancer and pulmonary hypertension. While both receptor groups are activated by their respective peptide agonists, pathogenic autoantibodies (auto-Abs) can also activate the AT1R and ETAR accompanied by respective clinical conditions. To date, the exact mechanisms and differences in binding and receptor-activation mediated by auto-Abs as opposed to endogenous ligands are not well understood. Further, several questions regarding signaling regulation in these receptors remain open. In the last decade, several receptor structures in the apo- and ligand-bound states were determined with protein X-ray crystallography using conventional synchrotrons or X-ray Free-Electron Lasers (XFEL). These inactive and active complexes provide detailed information on ligand binding, signal induction or inhibition, as well as signal transduction, which is fundamental for understanding properties of different activity states. They are also supportive in the development of pharmacological strategies against dysfunctions at the receptors or in the associated signaling axis. Here, we summarize current structural information for the AT1R, AT2R, and ETBR to provide an improved molecular understanding.


Assuntos
Angiotensinas , Receptor Tipo 1 de Angiotensina , Ligantes , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor de Endotelina A/metabolismo , Transdução de Sinais/fisiologia
18.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409344

RESUMO

The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.


Assuntos
Anticorpos , Receptor Tipo 1 de Angiotensina , Alanina , Angiotensina II , Anticorpos/farmacologia , Proliferação de Células , Células HEK293 , Humanos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
19.
J Clin Med ; 11(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35160284

RESUMO

The role of anti-HLA antibodies in transplant rejection is well-known but the injury associated with non-HLA antibodies is now widely discussed. The aim of our study was to investigate a role of non-HLA antibodies in hand allografts rejection. The study was performed on six patients after hand transplantation. The control group consisted of: 12 kidney transplant recipients and 12 healthy volunteers. The following non-HLA antibodies were tested: antibody against angiotensin II type 1 receptor (AT1R-Ab), antibody against endothelin-1 type-A-receptor (ETAR-Ab), antibody against protease-activated receptor 1 (PAR-1-Ab) and anti-VEGF-A antibody (VEGF-A-Ab). Chosen proinflammatory cytokines (Il-1, IL-6, IFNγ) were used to evaluate the post-transplant humoral response. Laboratory markers of endothelial activation (VEGF, sICAM, vWF) were used to assess potential vasculopathy. The patient with the highest number of acute rejections had both positive non-HLA antibodies: AT1R-Ab and ETAR-Ab. The same patient had the highest VEGF-A-Ab and very high PAR1-Ab. All patients after hand transplantation had high levels of laboratory markers of endothelial activation. The existence of non-HLA antibodies together with multiple acute rejections observed in patient after hand transplantation should stimulate to look for potential role of non-HLA antibodies in humoral injury in vascular composite allotransplantation.

20.
Front Immunol ; 13: 821681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185912

RESUMO

Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy.


Assuntos
Quimiocina CXCL1/metabolismo , Neovascularização Patológica/patologia , Diálise Peritoneal/métodos , Peritônio/irrigação sanguínea , Terapia de Substituição Renal/métodos , COVID-19/patologia , Células Cultivadas , Criança , Pré-Escolar , Epitélio/metabolismo , Humanos , Lactente , Interleucina-17/metabolismo , Falência Renal Crônica/terapia , Peritônio/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA